Search results for "Quantum Computation"
showing 10 items of 43 documents
Two-qubit entanglement dynamics for two different non-Markovian environments
2009
We study the time behavior of entanglement between two noninteracting qubits each immersed in its own environment for two different non-Markovian conditions: a high-$Q$ cavity slightly off-resonant with the qubit transition frequency and a nonperfect photonic band-gap, respectively. We find that revivals and retardation of entanglement loss may occur by adjusting the cavity-qubit detuning, in the first case, while partial entanglement trapping occurs in non-ideal photonic-band gap.
Quantum logic gates by adiabatic passage
2006
International audience; We present adiabatic passage techniques for the realisation of one and two-qubit quantum Gates. These methods use evolution along dark-states of the system, avoiding decoherence effects such as spontaneous emission. The advantage of these methods is their robustness: they are insensitive to the fluctuations of the parameters and to partial knowledge of the system.
Geometric factors in the adiabatic evolution of classical systems
1992
Abstract The adiabatic evolution of the classical time-dependent generalized harmonic oscillator in one dimension is analyzed in detail. In particular, we define the adiabatic approximation, obtain a new derivation of Hannay's angle requiring no averaging principle and point out the existence of a geometric factor accompanying changes in the adiabatic invariant.
Entanglement dynamics in superconducting qubits affected by local bistable impurities
2012
We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …
Geometric phase induced by a cyclically evolving squeezed vacuum reservoir
2006
We propose a new way to generate an observable geometric phase by means of a completely incoherent phenomenon. We show how to imprint a geometric phase to a system by "adiabatically" manipulating the environment with which it interacts. As a specific scheme we analyse a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath. As the squeezing parameters are smoothly changed in time along a closed loop, the ground state of the system acquires a geometric phase. We propose also a scheme to measure such geometric phase by means of a suitable polarization detection.
Observable geometric phase induced by a cyclically evolving dissipative process
2006
In a prevous paper (Phys. Rev. Lett. 96, 150403 (2006)) we have proposed a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon. The basic idea was to force the ground state of the system to evolve ciclically by "adiabatically" manipulating the environment with which it interacts. The specific scheme we have previously analyzed, consisting of a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase on the ground state of the system is indeed du…
Connection between optimal control theory and adiabatic-passage techniques in quantum systems
2012
This work explores the relationship between optimal control theory and adiabatic passage techniques in quantum systems. The study is based on a geometric analysis of the Hamiltonian dynamics constructed from the Pontryagin Maximum Principle. In a three-level quantum system, we show that the Stimulated Raman Adiabatic Passage technique can be associated to a peculiar Hamiltonian singularity. One deduces that the adiabatic pulse is solution of the optimal control problem only for a specific cost functional. This analysis is extended to the case of a four-level quantum system.
Improved constructions of quantum automata
2008
We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \frac{4}{\epsilon} \log 2p + O(1) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of \log p than the previously known construction of Ambainis and Freivalds (quant-ph/9802062). Similarly to Ambainis and Freivalds, our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some results in this direction.
Classical and Quantum Annealing in the Median of Three Satisfiability
2011
We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N = 100 and 80 variables, respectively. In the classical limit, we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit, we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble, both complexities diverge e…
Quantum inductive inference by finite automata
2008
AbstractFreivalds and Smith [R. Freivalds, C.H. Smith Memory limited inductive inference machines, Springer Lecture Notes in Computer Science 621 (1992) 19–29] proved that probabilistic limited memory inductive inference machines can learn with probability 1 certain classes of total recursive functions, which cannot be learned by deterministic limited memory inductive inference machines. We introduce quantum limited memory inductive inference machines as quantum finite automata acting as inductive inference machines. These machines, we show, can learn classes of total recursive functions not learnable by any deterministic, nor even by probabilistic, limited memory inductive inference machin…